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Acceleration of chemical transformations by the use of multiple
hydrogen-bondinginteractionshasattractedconsiderableattention.1-3

Nucleobases and related compounds are capable of forming
multiple hydrogen bonds in a complementary fashion.4,5 They
have been widely used as building blocks for supramolecular
systems,3,6 but their catalysis has been much less explored to
date.7,8 Herein we report the novel catalysis of a nucleobase in
the aminolysis of 2-amino-6-chloropurine9,10and wish to highlight
a crucial role of multiple hydrogen-bonding interactions in the
formation of a reactive intermediate and also a possible stabiliza-
tion of the transition state.

Reaction of 2-amino-6-chloro-9-hexylpurine1 (5 mM) with
diethylamine (Et2NH, 125 mM)11,12 was carried out in C6H6 at
30°C in the presence of nucleobases5-9 (Figure 1). Nucleobases
5 and7-9 formed double hydrogen-bonded complexes with1,
as observed by1H NMR,13aand showed similar binding isotherms

to one another in C6D6 at 30°C.14 In the presence of 1-hexade-
cyluracil (5, 15 mM), aminolysis of1 with Et2NH proceeded
smoothly to give 2-amino-6-diethylamino-9-hexylpurine (3) in
92% yield in 96 h (Figure 1,O). On the other hand, in the absence
of 5 under otherwise identical conditions to the above, the
aminolysis took place only very slowly to give3 in 22% yield
(Figure 1,2). The pseudo-first-order rate constant in the presence
of 5 (kobs) was 3.1× 10-2 h-1, which is 11.7-times larger than
that in the absence of5 (kuncat ) 2.6 × 10-3 h-1). A similar rate
enhancement was observed when an uridine (uracil ribonucleo-
side) derivative (8) was used in place of5, where the reaction
proceeded 8.4-times faster (kobs ) 2.2× 10-2 h-1) (Figure 1,9)
than the background reaction. In contrast, aminolysis of 6-chloro-
9-hexylpurine (2) having no NH2 functionality on C(2) was only
slightly accelerated by uracil5 with a ratiokobs/kuncat as small as
2.8 (kobs ) 2.4 × 10-2 h-1, kuncat ) 8.8 × 10-3 h-1) under the
same conditions as those in Figure 1.
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(13) (a) For example,1H NMR spectroscopy in toluene-d8 of an equimolar
mixture of 1 and 8 (5 mM each) at 30°C showed downfield shifts for the
signals due to NH2 of 1 (δ 4.24 f 4.33) and 5-H (δ 5.51 f 5.52), 1′-H (δ
5.83f 5.84), and NH (δ 8.03f 8.21) of8, indicating a base-paring interaction
between1 and8. (b) When an equimolar amount of Et2NH was added to the
above binary system, the NH2 signal of1 (δ 4.35) and the 5-H and 1′-H signals
of 8 (δ 5.53 and 5.85, respectively) showed further downfield shifts. (See
Supporting Information). Considering also the fact that addition of an
equimolar amount of Et2NH to a toluene-d8 solution of 1 or 8 resulted in
smaller chemical shift changes (NH2 of 1; δ 4.25, 5-H and 1′-H of 8; δ 5.52
and 5.84, respectively), the above observations suggest that1, 8, and Et2NH
form a ternary complex (10, Chart 1). In the ternary system, the NH signals
of 1 and Et2NH were not detected, indicating a facile intra-complex proton
exchange in10.

(14) 1H NMR titration of 1 (1 mM) with nucleobases5 and7-9 (1-150
mM) was performed in C6D6 at 30 °C. Binding isotherms, as obtained by
chemical shift change of the signal due to NH2 of 1, were analyzed by a
nonlinear curve-fitting method assuming a 1:1 complexation, to give associa-
tion constants, which were all in the range 10-20 M-1. These values are
comparable to those reported for similar double hydrogen-bonded complexes
such as the adenine-thymine base pair (see ref 5f).

Figure 1. Acceleration effects (kobs/kuncat) of nucleobases5-9 and
2-pyridone (15 mM) on aminolysis of1 (5 mM) with Et2NH (125 mM)
in C6H6 at 30°C. Inset: Time courses of the reaction in the absence (2)
and presence of5 (O), 8 (9), and9 ([).
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The reaction of1 (5 mM) with Et2NH (125 mM) was
investigated at various concentrations (2-30 mM) of uracil 5.
Upon increasing the initial concentration of5 ([5]0), the observed
initial rates (V0) showed saturation kinetics with respect to [5]0

15

to give a Vmax of 0.36 mM h-1 (kmax ) 7.3 × 10-2 h-1),16

indicating that5 can accelerate the aminolysis of1 by a maximum
factor of 28 () kmax/kuncat). Likewise, thekmax value of aminolysis
with 8 was evaluated to be 5.2× 10-2 h-1, which is 20-times
larger than the rate constant of the background reaction (kuncat).
The aminolysis of1 also showed a saturation signature when [Et2-
NH]0 was increased at given initial concentrations of1 (5 mM)
and 5 (15 mM).15 These kinetic behaviors suggest that the
aminolysis takes place via the formation of a ternary complex
among 2-amino-6-chloropurine (1), Et2NH, and uracil as a reactive
intermediate.13b Accordingly, the entropy of activation for the
reaction in the presence of5 (-25.4 cal mol-1 K-1) was much
more positive than that of the background reaction (-44.7 cal
mol-1 K-1),17 indicating a smaller entropy loss required for the
transition state.

Chart 1 shows the most plausible ternary complexes for the
aminolysis of1 (syn-10and/oranti-10),18 which allow a proximal
orientation of the C(6)-Cl moiety of1 to the coordinated amine
due to a directional multiple hydrogen-bonding interaction
between1 and the uracil imido functionality. Such a ternary
complexation is considered unfavorable for 6-chloropurine (2), a
less reactive substrate toward the5-mediated aminolysis, due to
the lack of NH2 functionality on C(2) essential for the base-pairing
interaction with5. Likewise, a N(3)-methylated uracil (6) hardly
accelerated the aminolysis of1 (kobs/kuncat) 1.1, Figure 1). Chart
1 also shows the importance of the imido CdO/N-H/CdO
sequence in5, since it can leave one of the carbonyl functionalities
for the binding of Et2NH even after the base-pairing complexation
with 1 has been established: Use of a cyclic amide such as
2-pyridone bearing only a CdO/N-H sequence, in place of cyclic
imide 5, for the aminolysis of1 resulted in a small acceleration

with a kobs/kuncatvalue of 2.7 (Figure 1). Although cytosine9 has
a complementary binding site for114 and an additional carbonyl
group for the interaction with Et2NH, the acceleration effect of9
on the aminolysis of1 was again negligibly small (kobs/kuncat )
1.5, Figure 1,[). In this case, the most plausible ternary complex
may accommodate Et2NH at the cytosine C(2)dO functionality,
which is oriented away from the C(6)-Cl moiety of 1.15 Along
the line of this mechanism, it is interesting to note that 5,6-
dihydrouracil (7) was much less effective than5 toward the
aminolysis of1 (kobs/kuncat) 2.3, Figure 1): As already described,
7 has a binding capability similar to5 in complexation with1,14

as it bears an imido CdO/N-H/CdO sequence. However, the
basicity of the CdO oxygen atoms is not high enough to bind
Et2NH, due to the absence of a vinyl group.19 Furthermore, a
twisted conformation of7 may also contribute to the catalytic
activity. It should also be noted that the poor but definite
acceleration effects of7, 9, and 2-pyridone indicate a possible
electronic contribution of the base-pairing interaction to the
activation of1 (acid catalysis), which, however, is considerably
small.

The rate-determining step for the nucleophilic aminolysis of1
must involve a zwitterionic transition state, which is considered
unfavorable in aprotic solvents such as C6H6. However, in the
presence of uracils5 and 8, such a transition state is possibly
stabilized because of the multiple hydrogen-bonding interactions
(Chart 2).8 Therefore, the hydrogen-bonding interactions here are
likely to play an important role not only in the formation of the
reactive intermediate (syn-10 and anti-10) but also in the
stabilization of the transition state.

In the present paper, we have demonstrated the novel catalysis
of a nucleobase such as uracil for chemical transformation of other
nucleobase derivatives having a complementary hydrogen-bonding
capability. This observation may provide a new strategy toward
“supramolecular catalysis”.

Supporting Information Available: Plots of initial rate (V0) versus
initial concentrations of5 and Et2NH, 1H NMR spectra of a ternary
mixture of1, 8, and Et2NH and the control systems, and possible modes
of hydrogen-bonded complexes between1 and uracil and between1 and
cytosine (PDF). This material is available free of charge via the Internet
at http://pubs.acs.org.

JA990944S

(15) See Supporting Information.
(16) Determined from modified Lineweaver-Burk plots (1/[V0 - Vuncat]

versus 1/[5]0), according to the equation 1/(V0 - Vuncat) ) 1/(Vmax - Vuncat) +
Km/[5]0/(Vmax - Vuncat).

(17) Estimated fromkmax andkuncat values at 20, 30, and 40°C.
(18) Although four different hydrogen-bonding modes are possible for the

ternary complexation,syn-10 and anti-10 are the most plausible, since the
other two modes appear to suffer from a steric hindrance of the N(9) substituent
(see Supporting Information).

(19) 13C NMR signals due to the two CdO groups of7 (30 mM in C6D6,
30 °C) at δ 155.0 (C(2)) and 168.6 (C(4)) are both downfield from those of
5 [δ 150.1 (C(2)) and 163.4 (C(4))], indicating lower electron densities at the
CdO moieties in7.

Chart 1. Plausible Ternary Complexes among
2-amino-6-chloropurine (1), Et2NH, and Uracil

Chart 2. Possibility of Transition-State Stabilization by
Multiple Hydrogen-Bonding Interactions
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